8 research outputs found

    Serving GODAE Data and Products to the Ocean Community

    Get PDF
    The Global Ocean Data Assimilation Experiment (GODAE [http:// www.godae.org]) has spanned a decade of rapid technological development. The ever-increasing volume and diversity of oceanographic data produced by in situ instruments, remote-sensing platforms, and computer simulations have driven the development of a number of innovative technologies that are essential for connecting scientists with the data that they need. This paper gives an overview of the technologies that have been developed and applied in the course of GODAE, which now provide users of oceanographic data with the capability to discover, evaluate, visualize, download, and analyze data from all over the world. The key to this capability is the ability to reduce the inherent complexity of oceanographic data by providing a consistent, harmonized view of the various data products. The challenges of data serving have been addressed over the last 10 years through the cooperative skills and energies of many individuals

    The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2)

    Get PDF
    The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S

    Post-Messinian evolution of the Florence Ridge area (Western Cyprus Arc), Part I: Morphostructural analysis

    No full text
    International audienceThe Florence Ridge, part of the western Cyprus arc, is a compressional relief that was eroded during the Messinian salinity crisis while deposition of salt occurred North (Antalya basin) and South (Herodotus abyssal plain). In order to better assess the impact of salt-tectonics in the Florence Ridge region deformations, we conducted a morpho-structural analysis of available multibeam and seismic data (Simed and Prismed II campaigns). It is indeed a crucial issue to distinguish crustal and gravity driven structures in the compressional to strike-slip belts of the eastern Mediterranean.Along the Antalya basin, we mainly observed multi-directional tectonic rafts typical of gravity gliding above salt. On the Florence Ridge itself, the base of salt evolves laterally to a Messinian erosional surface that erodes a series of stacked nappes. This surface is involved in recent faulting. South of the Florence Ridge, a nearly 100 km wide fold belt characterizes the Herodotus abyssal plain. Three different zones parallel to the Florence Ridge appear within this fold belt. Those are respectively from North to South zones A, B and C. Zone A is characterized mainly by small-wavelength folding and faulting. Approaching Zone B, a long extensional graben deforms the seafloor. Zone B stands ~ 100 to 200 m higher than zones A and C. There, salt welding seems common. In the easternmost zone B deep sub-circular bathymetric depressions are associated with extremely thick and fan-shaped depocenters probably emplaced in relation with active sub-salt thrusts. Many evidences suggest post-Messinian uplift in this zone. Zone C shows medium to high wavelength salt-cored folds. Wavelength of those folds increase approaching the distal Nile deep-sea fan. Within zone C, a nearly undeformed domain exists approaching the Eratosthenes seamount. ‘En echelon’ folds bound this flat domain suggesting lateral salt extrusion at the junction between zone C and the distal Nile deep-sea fan.To conclude, numerous evidences argue for a post-Messinian reactivation of the pre-Messinian Florence Ridge accretionary wedge (numerous folds, uplifted zones). The salt, as on the nearby Mediterranean Ridge, decouples deep and surface deformations and even allow the development of isolated grabens and associated salt ridges in the heart of the Florence compressional zone. We propose in this case that local basal slope of salt increase related to basement fault activity triggered gravity gliding and thus extensional deformation despite the regional compressional regime. Finally, this study shows that the eastern Nile deep-sea fan, submitted to extremely vigorous salt tectonics seems to have collided with the Florence Ridge fold belt and to have generated a “salt extrusion” zone

    The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2)

    No full text
    The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2) is a digital bathymetric model (DBM) for the area south of 50° S with special emphasis on the bathymetry of the Southern Ocean. IBCSO v2 has a resolution of 500 m × 500 m in a Polar Stereographic projection (EPSG: 9354). The total data coverage of the seafloor is 23.79% with a multibeam-only data coverage of 22.32%. The remaining 1.47% include singlebeam and other data. IBCSO v2 is the most authoritative seafloor map of the area south of 50°S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Ocean (GEBCO) supported by the Nippon Foundation – GEBCO Seabed 2030 Project. GEBCO is a project under the auspices of the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission (IOC) with the goal to produce the authoritative map of the world's oceans. The IBCSO Project is also an integral part of the Antarctic research community and an expert group of the Scientific Committee on Antarctic Research (SCAR). For further information about the IBCSO Project, please visit http://www.ibcso.org
    corecore